Temporary Diversion Dikes, Earth Dikes, & Interceptor Dikes Diversion dikes can be used to contain storm water onsite #### **Description** Earthen perimeter controls usually consist of a dike or a combination dike and channel constructed along the perimeter of a disturbed site. Simply defined, an earthen perimeter control is a ridge of compacted soil, often accompanied by a ditch or swale with a vegetated lining, located at the top or base of a sloping disturbed area. Depending on their location and the topography of the landscape, earthen perimeter controls can achieve one of two main goals. Located on the upslope side of a site, earthen perimeter controls help to prevent surface runoff from entering a disturbed construction site. An earthen structure located upslope can improve working conditions on a construction site by preventing an increase in the total amount of sheet flow runoff traveling across the disturbed area and thereby lessen erosion on the site. Alternatively, earthen perimeter control structures can be located on the downslope side of a site to divert sediment-laden runoff created onsite to onsite sediment trapping devices, preventing soil loss from the disturbed area. These control practices can be referred to by a number of terms, including temporary diversion dikes, earth dikes, or interceptor dikes. Generally speaking, however, all earthen perimeter controls are constructed in a similar fashion with a similar objective to control the velocity and/or route of sediment-laden storm water runoff. ## **Applicability** Temporary diversion dikes are applicable where it is desirable to divert flows away from disturbed areas such as cut or fill slopes and to divert runoff to a stabilized outlet (EPA, 1992). The dikes can be erected at the top of a sloping area or in the middle of a slope to divert storm water runoff around a disturbed construction site. In this way, earth dikes can be used to reduce the length of the slope across which runoff will travel, thereby reducing the erosion potential of the flow. If placed at the bottom of a sloping disturbed area, diversion dikes can divert flow to a sediment trapping device. Temporary diversion dikes are usually appropriate for drainage basins smaller than 5 acres, but with modifications they can be capable of servicing areas as large as 10 acres. With regular maintenance, earthen diversion dikes have a useful life span of approximately 18 months. To prevent storm water runoff from entering a site, earthen perimeter controls can be used to divert runoff from areas upslope around the disturbed construction site. This is accomplished by constructing a continuous, compacted earthen mound along the upslope perimeter of the site. As an additional control measure, a shallow ditch can accompany the earthen mound. ### **Siting and Design Considerations** The siting of earthen perimeter controls depends on the topography of the area surrounding a specific construction site and on whether the goal is to prevent sediment-laden runoff from entering the site or to keep storm water runoff from leaving the site. When determining the appropriate size and design of earthen perimeter controls, the shape of the surrounding landscape and drainage patterns should be considered. Also, the amount of runoff to be diverted, the velocity of runoff in the diversion, and the erodibility of soils on the slope and within the diversion channel or swale are essential design considerations (WSDE, 1992). Diversion dikes should be constructed and fully stabilized prior to commencement of major land disturbance. This will maximize the effectiveness of the diversion measure as an erosion and sediment control device. The top of earthen perimeter controls designed as temporary flow diversion measures should be at least 2 feet wide. Bottom width at ground level is typically 6 feet. The minimum height for earthen dikes should be 18 inches, with side slopes no steeper than 2:1. For points where vehicles will cross the dike, the slope should be no steeper than 3:1 and the mound should be constructed of gravel rather than soil. This will prolong the life of the dike and increase effectiveness at the point of vehicle crossing. If a channel is excavated along the dike, its shape can be parabolic, trapezoidal, or V-shaped. Prior to excavation or mound building, all trees, brush, stumps and other objects in the path of the diversion structure should be removed and the base of the dike should be tilled before laying the fill. The maximum design flow velocity should range from 1.5 to 5.0 feet per second, depending on the vegetative cover and soil texture. Most earthen perimeter structures are designed for short-term, temporary use. If the expected life span of the diversion structure is greater than 15 days, it is strongly recommended that both the earthen dike and the accompanying ditch be seeded with vegetation immediately after construction. This will increase the stability of the perimeter control and can decrease the need for frequent repairs and maintenance. #### Limitations Earth dikes are an effective means of diverting sediment-laden storm water runoff around a disturbed area. However, the concentrated runoff in the channel or ditch has increased erosion potential. To alleviate this erosion capability, diversion dikes must be directed to sediment trapping devices, where erosion sediment can settle out of the runoff before being discharged to surface waters. Examples of appropriate sediment trapping devices that might be used in conjunction with temporary diversion structures include a sediment basin, a sediment chamber/filter, or any other structure designed to allow sediment to be collected for proper disposal. If a diversion dike crosses a vehicle roadway or entrance, its effectiveness can be reduced. Wherever possible, diversion dikes should be designed to avoid crossing vehicle pathways. #### **Maintenance Considerations** Earthen diversion dikes should be inspected after each rainfall to ensure continued effectiveness. The dike should be maintained at the original height, and any decrease in height due to settling or erosion should be repaired immediately. To remain effective, earth dikes must be compacted at all times. Regardless of rainfall frequency, dikes should be inspected at least once every 2 weeks for evidence of erosion or deterioration. #### **Effectiveness** When properly placed and maintained, earth dikes used as temporary diversions are effective for controlling the velocity and direction of storm water runoff. Used by themselves, they do not have any pollutant removal capability. Diversion dikes must be used in combination with an appropriate sediment trapping device at the outfall of the diversion channel. ## **Cost Considerations** The cost of constructing an earthen dike can be broken down into two components: (1) site preparation, including excavation, placement and compacting of fill, and grading, and (2) site development, including topsoiling and seeding for vegetative cover. The Southeastern Wisconsin Regional Planning Commission (1991) estimated the total cost of site preparation to be \$46.33 to \$124.81 for a 100-foot dike with 1.5-foot-deep, 3:1 side slopes. The cost of site development was estimated at \$115.52 to \$375.44. The total cost was between \$162 and \$500.